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Abstract Given a protein sequence, how to identify its subcellular location?With the rapid increase in newly found
protein sequences entering into databanks, the problem has become more and more important because the function of a
protein is closely correlatedwith its localization. To practically dealwith the challenge, a dataset has been established that
allows the identification performed among the following 14 subcellular locations: (1) cell wall, (2) centriole, (3) chloro-
plast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome,
(10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasmamembrane, and (14) vacuole. Compared with the datasets
constructed by the previous investigators, the current one represents the largest in the scope of localizations covered, and
hencemany proteins whichwere totally out of picture in the previous treatments, can now be investigated.Meanwhile, to
enhance the potential and flexibility in taking into account the sequence-order effect, the series-mode pseudo-amino-
acid-composition has been introduced as a representation for a protein. High success rates are obtained by the re-
substitution test, jackknife test, and independent dataset test, respectively. It is anticipated that the current automated
method canbedeveloped to a high throughput tool for practical usage in both basic research andpharmaceutical industry.
J. Cell. Biochem. 90: 1250–1260, 2003. � 2003 Wiley-Liss, Inc.
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A cell contains approximately 109 protein
molecules. The human body consists of hun-
dreds of cell types, all originating from the
fertilized egg. During the embryonic and foetal
periods, the number of cells increases dramati-
cally. The cells mature and become specialized
to form the various tissues and organs of the
body. The human body hosts 1014 cells [Radford,
2003], or approximately 1023 protein molecules.
It is quite interesting to see that the latter has
the same order of magnitude as the Avogadro
constant, isn’t it? A cell consists of many dif-
ferent compartments, or organelles, each sur-

rounded by a membrane. The organelles are
specialized to carry out different tasks. For
example, the mitochondrion functions as the
‘‘power plant,’’ producing energy needed by the
cell. The cell nucleus contains the genetic
material (DNA), governing all functions of the
cell. And the endoplasmic reticulum is, together
with the ribosomes, responsible for synthesiz-
ing proteins.

According to the localization or compartment
in a cell, proteins are generally classified into
the following 14 categories: (1) cell wall, (2)
centriole, (3) chloroplast, (4) cytoplasm, (5) cyto-
skeleton, (6) endoplasmic reticulum, (7) extra-
cellular, (8) Golgi apparatus, (9) lysosome, (10)
mitochondria, (11) nucleus, (12) peroxisome,
(13) plasma membrane, and (14) vacuole (see
Fig. 1 for a schematic illustration). Note that the
cell wall, chloroplast, and vacuole proteins exist
only in a plant cell, while the centriole proteins
only in an animal cell. Given the sequence of a
protein, how can we predict which subcellular
location it belongs to? This is certainly a very
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important problem since the localization of a
protein is closely correlated with its biological
function. Although the information about pro-
tein subcellular location can be determined by
conducting various experiments, that is both
time-consuming and costly. Owing to the fact
that the number of sequences entering into
databanks has been rapidly increasing, for
example, in 1986 the total sequence entries in
SWISS-PROT [Bairoch and Apweiler, 2000]
was only 3,939 while the number was increased
to 59,021 in 1996 and 101,602 in 2000, the
problem has become an urgent challenge to
scientists. Particularly, it is anticipated that
many more new protein sequences will be
derived soon because of the recent success of
the human genome project, which has provided
an enormous amount of genomic information
in the form of 3 billion base pairs, assembled
into tens of thousands of genes. Therefore, the

challenge will become even more urgent and
critical. Actually, many efforts have been made
trying to develop some computational methods
for quickly predicting the subcellular locations
of proteins [Nakai and Kanehisa, 1992; Naka-
shima and Nishikawa, 1994; Cedano et al.,
1997; Claros et al., 1997; Reinhardt and Hub-
bard, 1998; Chou and Elrod, 1999b; Chou, 2001;
Chou and Cai, 2002; Pan et al., 2003; Zhou and
Doctor, 2003]. Of these methods, some [Claros
et al., 1997; Nakai and Kanehisa, 1992] are
based on the N-terminal sorting signals. Their
merit is having a clear biological implication
[Chou, 2002b]. However, as pointed out by
Reinhardt and Hubbard [1998], ‘‘in large gen-
ome analysis projects genes are usually auto-
matically assigned and these assignments are
often unreliable for the 50-regions.’’ ‘‘This can
lead to leader sequences being missing or only
partially included, thereby causing problems

Fig. 1. Schematic illustration to show the 14 subcellular
locations of proteins: (1) cell wall, (2) centriole, (3) chloroplast,
(4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7)
extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochon-
dria, (11) nucleus, (12) peroxisome, (13) plasmamembrane, and

(14) vacuole. Note that the cell wall, chloroplast, and vacuole
proteins exist only in a plant cell, while the centriole proteins
only in an animal cell. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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for prediction algorithms depending on them.’’
Therefore, most of the existing algorithms are
based on the information derived from entire
protein sequences rather than their signal
peptides only. However, because of the difficulty
due to the extreme variance in sequence order
and length, the majority of these algorithms are
based on the amino-acid-composition alone.
According to the classical definition, the amino
acid composition consists of 20 components each
representing the occurrence frequency of one
of the 20 native amino acids in a given protein,
and hence a protein is represented by a 20-D
(dimensional) vector. Obviously, if using the
classical amino acid composition alone to re-
present a protein, all the sequence-order and
sequence-length effects would be missed out
and the prediction method underlain with such
a basismustbeara considerable intrinsic limita-
tion. It is in only a few recent papers [Chou,
2000a, 2001; Cai et al., 2002; Pan et al., 2003]
that some partial sequence-order effects were
incorporated through a novel concept, the so-
called pseudo-amino acid composition [Chou,
2001]. Meanwhile, a completely different ap-
proach, the so-called functional domain compo-
sition [Chou and Cai, 2002] was proposed that
incorporated the functional type information.
The introduction of the functional domain com-
position represents an important progress in
directly relating the localization of proteins with
their function. However, owing to the fact that
the current functional domain database [Mur-
vai et al., 2001] is far from complete yet, some
proteins cannot be properly defined in terms of
the functional domain composition, leading to
some setback in practical application. Also, none
of the aforementioned methods includes the
training data for predicting proteins located in
the cell wall and centriole. In view of this, we
shall first construct a new training dataset that
includes the cell wall and centriole proteins as
well, followed by defining a new pseudo amino
acid composition to take into account the
sequence-order effects for predicting the attri-
butes of proteins among their 14 localizations
(Fig. 1).

MATERIALS AND METHODS

Construction of Working Datasets

Two working datasets, i.e., a training dataset
and an independent testing dataset, were con-
structed based on release 40.0 of SWISS-PROT

database [Bairoch and Apweiler, 2000] pub-
lished on 08-Mar-2002 by following the same
screening procedures and criteria as described
by Chou and Elrod [1999b] to avoid inclusion
of any localization-ambiguous or redundant
sequences.

The training dataset thus obtained consists
of 14 subsets and 3,799 proteins, of which (1) 71
are of cell wall, (2) 65 of centriole, (3) 316 of
chloroplast, (4) 1,113 of cytoplasm, (5) 249 of
cytoskeleton, (6) 289 of endoplasmic reticulum,
(7) 393 of extracell, (8) 90 Golgi apparatus,
(9) 123 of lysosome, (10) 389 of mitochondria,
(11) 399 of nucleus, (12) 147 of peroxisome, (13)
69 of plasma membrane, and (14) 86 of vacuole.
The code for each of the 3,799 proteins in the
training dataset is given in the Online Supple-
mental Material A, where the accession number
rather than the SWISS-PROT name is used
because the accession number is more stable for
representing a unique protein sequence.

The independent testing dataset consists of
14 subsets and 4,498 proteins, of which (1) 35 are
of cell wall, (2) 4 of centriole, (3) 855 of chloro-
plast, (4) 186 of cytoplasm, (5) 131 of cytoskele-
ton, (6) 136 of endoplasmic reticulum, (7) 1,252
of extracell, (8) 41 Golgi apparatus, (9) 57 of
lysosome, (10) 752 of mitochondria, (11) 914
of nucleus, (12) 84 of peroxisome, (13) 24 of
plasma membrane, and (14) 17 of vacuole. The
code for each of the 4,498 proteins in the train-
ing dataset is given in the Online Supplemental
Material B.

It is instructive to conduct a sequence identity
analysis for the proteins studied here. The se-
quence identity between two protein sequences
is defined as follows. Suppose the maximum
number of residues matched by sliding one
sequence along the other is M, and the align-
ment length isL, the sequence identity between
the two sequences is defined as M/L. The
treatment for gaps is according to CLUSTALW
[Thompson et al., 1994]. The average sequence
identity obtained by the sequence match opera-
tion for each of the 14 subsets in the training
dataset is given in the Online Supplemental
Material A, and that in the testing dataset given
in the Online Supplemental Material B. Fur-
thermore, the similar sequence match operation
was also performed for the dataset by combining
the training and testing datasets. It was found
that the average sequence identities for the 14
subsets in the combined dataset are consecu-
tively 0.1020, 0.1946, 0.0691, 0.0655, 0.1024,
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0.1005, 0.0596, 0.0769, 0.0806, 0.0698, 0.0652,
0.0856, 0.1222, and 0.1252. From these data,
we can see that most sequences in a same
subset have quite low sequence identity not
only for the training and testing datasets, but
also for their combination, a clear indication
of exclusion of redundant and homologous
sequences.

Pseudo Amino Acid Composition

In order to improve the quality of statistical
prediction for protein subcellular location, one
of the most important steps is how to give an
effective representation for a protein. According
to common sense, an effective representation
should include as much information a protein
has as possible. Obviously, the entire protein
sequence contains of course the most complete
information. However, if using the entire se-
quence of a protein as its representation to
formulate a statistical prediction algorithm, one
would face the difficulty to deal with almost an
infinity of sample patterns, as elaborated by
Chou [2001]. To formulate a feasible statistical
prediction algorithm, a protein must be expres-
sed in terms of a set of discrete numbers. The
earlier approach in this regard was to represent
proteins according their amino acid compo-
sition, which has substantially reduced the
number of samples and made the statistical
treatment become tractable. Such an approach
was widely used to predict protein structural
class [Nakashima et al., 1986; Chou, 1989, 1995;
Chou and Zhang, 1994; Bahar et al., 1997;
Chou et al., 1998; Zhou, 1998], predict protein
secondary structure content [Krigbaum and
Knutton, 1973; Muskal and Kim, 1992; Zhang
et al., 1996; Chou, 1999b], to predict protein
subcellular location [Nakashima and Nishi-
kawa, 1994; Cedano et al., 1997; Reinhardt
and Hubbard, 1998; Chou and Elrod, 1999b;
Chou, 2000b], to predict GPCR types [Chou and
Elrod, 2002; Elrod and Chou, 2002], and to
predict enzyme family classes [Chou and Elrod,
2003]. However, as mentioned above, if using
the 20-D 1classical amino acid composition to
represent a protein, all the sequence-order and
sequence-length effects would be missed out
and the prediction method underlain with such
a basis must bear a considerable intrinsic limi-
tation. Here we are actually confronted with
such a dilemma that, if wishing to include the
complete information of an entire protein chain,
the prediction would become impracticable; if

wishing to make the prediction feasible, some of
its information must be dropped. In view of this,
can we find a compromise scenario where a
protein is still represented by a set of discrete
numbers which, however, are also able to con-
tain as much of the sequence-order effects as
possible? The introduction of the pseudo amino
acid composition [Chou, 2001] is a promising
effort in this regard that has made a remarkable
improvement in predicting protein subcellular
location. Unlike the classical amino acid com-
position that consists of only 20 components, the
pseudo amino acid composition consists of 20þ l
discrete numbers, where the first 20 are the
same as the 20 components in the amino acid
composition and the remainders represent l
different ranks of sequence-order correlation
factors [Chou, 2002a]. Here we would like to
propose a different approach to define the
pseudo amino acid composition as formulated
below.

Suppose a protein X with a sequence of
L amino acid residues:

R1 R2 R3 R4 R5 R6 R7 � � � � � �RL ð1Þ

where R1 represents the residue at sequence
position 1, R2 the residue at position 2, and so
forth. The pseudo amino acid composition for
the protein is generated by merging two sets
of sequence-order-correlated factors into the
conventional amino acid composition. The
first set is called delta function set, and its l
sequence-order-correlated factors are given by
(Fig. 2):

d1 ¼ 1
L�1

PL�1

i¼1

Di;iþ1

d2 ¼ 1
L�2

PL�2

i¼1

Di;iþ2

d3 ¼ 1
L�3

PL�3

i¼1

Di;iþ3

::::::::::::::::::::::

dl ¼ 1
L�l

PL�l

i¼1

Di;iþl

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ðl < LÞ ð2Þ

where Di,j is a delta function defined by

Di;j ¼ DðRi;RjÞ ¼
1; if Ri¼ Rj

0; otherwise

�
ð3Þ

The second set is called hydrophobicity set,
and its m sequence-order-correlated factors are
given by (Fig. 3):
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where Hi,j is a hydrophobicity correlation func-
tion given by

Hi;j ¼ HðRiÞ �HðRjÞ ð5Þ

where H(Ri) and H(Rj) are the hydrophobicity
values for Ri and Rj, respectively, and the dot (�)
means the multiplication sign. Note that before
substituting the values of hydophobicity into
Equation (5), they were all subjected to a Stan-
dard Conversion as described by the following
equation:

HðiÞ ¼
H0ðiÞ �

P20

i¼1

H0ðiÞ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20

i¼1

H0ðiÞ�
P20

i¼1

H0ðiÞ
20

� �2

20

vuut ð6Þ

where we use the numerical indices 1, 2, 3, . . . ,
20 to represent the 20 native amino acids
according to the alphabetical order of their
single-letter codes: A, C, D, E, F, G, H, I, K, L,
M, N, P, Q, R, S, T, V, W, and Y. And H0

1ðiÞ is the
original hydrophobicity value of the ith amino
acid that was taken from Tanford [1962]. The 20
converted hydrophobicity values obtained by
Equation 6 will have a zero mean value, and will
remain unchanged if going through the same
conversion procedure again.

After merging the sequence-order-correlated
factors from Equations (2) and (4) into the clas-
sical 20-D amino acid composition, we obtain a
pseudo amino acid composition with 20þ lþ m
components. In other words, the representation
for protein X is now formulated as

X ¼

x1

..

.

x20

x20þ1

..

.

x20þl

x20þlþ1

..

.

x20þlþm

2
66666666666666666664

3
77777777777777777775

; ð7Þ

Fig. 2. A schematic drawing to show (a) the 1st-rank, (b) the
2nd-rank, and (c) the 3rd-rank sequence-order-coupling mode
along a protein sequence through a delta-function, where Di,j

is given by Equation (3). Panel (a) reflects the coupling mode

between all themost contiguous residues, panel (b) that between
all the 2nd most contiguous residues, and panel (c) that between
all the 3rd most contiguous residues.
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where

where fi is the normalized occurrence frequency
of the 20 amino acids in the protein X, dj the
j-tier sequence-correlation factor computed ac-
cording to Equation (2), hk the k-tier sequence-
correlation factor computed according to Equa-
tion (4), andw1 andw2 are the weight factors. In
the current study, we chose w1¼w2¼ 0.5 to
make the data within the range easier to be
handled (w1 and w2 can be of course assigned
with other values, but this would not have a big
impact to the final results). As we can see from
Equations (7–8), the first 20 components re-
flect the effect of the classical amino-acid-
composition, while the components from 20þ 1
to 20þ lþ m reflect the effect of sequence order.
A set of such 20þ lþ m components is called the
series-mode pseudo-amino-acid-composition. It
has the following three advantages: (a) It con-

tains more sequence-order effects not only than
the conventional 20-D amino-acid-composition
[Nakashima et al., 1986], but also than the 210-
D pair-coupled amino-acid-composition [Chou,
1999b] and the 400-D 1st-order coupled amino-
acid-composition [Liu and Chou, 1999], as
reflected by a series of sequence-correlation
factors with different tiers and modes of correla-
tion (see Figs. 2 and 3 and Eqs. (2) and (4)). (b)
Compared with the previous approach [Chou,
2001] where the pseudo amino acid components
were generated by combining various biochem-
ical quantities through a parallel mode, the
series mode is adopted in the current approach
and hence the situation of mutual cancellation
among themselves in counting the sequence-
order effects would be less likely to happen. (c)
The introduction of delta-function (Eq. 3) has

Fig. 3. A schematic drawing to show (a) the 1st-rank, (b) the 2nd-rank, and (c) the 3rd-rank sequence-order-
coupling mode along a protein sequence through a hydrophobicity correlation function, whereHi,j is given
by Equation (5). See legend to Figure 2 for further explanation.

xu ¼

fuP20

i¼1
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j¼1

djþw2
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; ð1 � u � 20Þ
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j¼1

djþw2

Pm
k¼1

hk
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w2hu�20�lP20

i¼1

fiþw1
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; ð20 þ lþ 1 � u � 20 þ lþ mÞ

8>>>>>>>>>><
>>>>>>>>>>:
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not only made the computation quite simple but
also very effective in counting the sequence-
order effects.

Prediction Algorithms

As we can see from Equations (7), the pseudo-
amino-acid-composition has the same formula-
tion as the conventional one except containing
more components. Therefore, all the existing
prediction algorithms based on the conven-
tional amino-acid-composition, such as the least
Hamming distance algorithm [Chou, 1989], the
ProtLock algorithm [Cedano et al., 1997], and
the covariant discriminant algorithm [Chou
and Elrod, 1999b] can be applied on the
pseudo-amino-acid-composition by a straight-
forward augmentation procedure as illustrated
in Chou [2001], and hence there is no need to
repeat here. It is instructive, however, to point
out that, since the normalization condition
imposed by Equation (8), the 20þ lþ m com-
ponents of the pseudo amino acid composition
are not independent. Therefore, a dimension-
reduced operation by leaving out one of the
components and making the rest completely
independent is needed when using the augmen-
ted covariant discriminant algorithm; i.e., a
protein should be defined in a (20þ lþ m�1)-D
space instead of (20þ lþ m)-D space. Otherwise,
a divergence difficulty will occur. However,
which one of the 20þ lþ m components should
be removed? Anyone. The reason is that accord-
ing to the ‘‘Invariance Theorem’’ given in
Appendix A of Chou [1995], the values of the
covariant discriminant function will remain the
same regardless of which one of the 20þ lþ m
components is left out. The theorem can also be
used to address similar problems occurring in
other algorithms that involve covariance matrix
[Cedano et al., 1997; Zhou, 1998; Zhou and Assa-
Munt, 2001; Pan et al., 2003; Zhou and Doctor,
2003].

RESULTS AND DISCUSSION

The newly constructed datasets as given in
the Online Supplemental Materials A and B will
serve as the training and independent testing
datasets, respectively. Both consist of 14 sub-
sets corresponding to 14 subcellular locations
(Fig. 1). Compared with the 12 subcellular
location dataset [Chou and Elrod, 1999b] that
is so far the largest in number of locations
considered, the datasets used here cover even
more localizations.

The demonstration was conducted by three
most typical approaches in statistical prediction
[Chou and Zhang, 1995]; i.e., the re-substitution
test, jackknife test, and independent dataset
test. Since the sequence-order effects are incor-
porated through the pseudo amino acid compo-
nents (Eq. 7), a question is naturally raised: how
many pseudo amino acid components should be
used, or what numbers should be assigned for l
and m during prediction? Actually, these num-
bers are determined through an optimal process
by maximizing the success rate from the jack-
knife test. This is because among the inde-
pendent dataset test, sub-sampling test and
jackknife test often used for cross-validation in
statistical prediction, the jackknife test is deem-
ed as the most effective and objective one; see,
e.g., Chou and Zhang [1995] for a comprehen-
sive discussion about this, and Mardia et al.
[1979] for the mathematical principle. The
optimal values thus obtained for the current
training dataset are l¼ m¼ 13, meaning that
the pseudo amino acid composition contains 13
delta-function correlation factors and 13 hydro-
phobicity correlation factors and that any pro-
tein in this study should be represented by a
46-D vector (see Eq. 7).

Re-Substitution Test

The so-called re-substitution test is an exam-
ination for the self-consistency of a prediction
method. When the re-substitution test is per-
formed for the current study, the subcellular
location of each protein in the dataset is in turn
identified using the rule parameters derived
from the same data set, the so-called training or
learning dataset. The overall success rate thus
obtained for predicting the 14 subcellular loca-
tions of the 3,799 proteins is given in Table I,
from which we can see that, of the 3,799 pro-
teins, 3,245 were correctly predicted for their
subcellular locations, and only 554 proteins
incorrectly predicted. The overall success rate
is 85.4%, indicating a good self-consistency for
such a complicated problem involving 14 sub-
cellular locations. However, during the process
of the re-substitution test, the rule parameters
derived from the training data set include the
information of the query protein later plug-
ged back in the test. This will certainly under-
estimate the error and enhance the success rate
because the same proteins are used to derive the
rule parameters and to test themselves. Accord-
ingly, the success rate thus obtained represents
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some sort of optimistic estimation [Chou, 1995;
Chou and Elrod, 1999b; Cai, 2001; Zhou and
Assa-Munt, 2001; Pan et al., 2003]. Never-
theless, the re-substitution test is absolutely
necessary because it reflects the self-consis-
tency of an identification method, especially for
its algorithm part. An identification algorithm
certainly cannot be deemed as a good one if its
self-consistency is poor. In other words, the re-
substitution test is necessary but not sufficient
for evaluating an identification method. As
a complement, a cross-validation test for an
independent testing data set is needed because
it can reflect the effectiveness of an identifica-
tion method in practical application. This is
important especially for checking the validity of
a training database: whether it contains suffi-
cient information to reflect all the important
features concerned so as to yield a high success
rate in application.

Jackknife Test

As mentioned above, jackknife test is the key
for examining a prediction method [Mardia
et al., 1979; Chou and Zhang, 1995; Zhou and
Assa-Munt, 2001]. During jackknifing, each
protein in the dataset is in turn singled out as
a tested protein and all the rule-parameters are
calculated based on the remaining proteins. In

other words, the subcellular location of each
protein is identified by the rule parameters de-
rived using all the other proteins except the one
which is being identified. During the process of
jackknifing both the training data set and test-
ing data set are actually open, and a protein will
in turn move from one to the other. The overall
success rate by jackknife test thus obtained for
the 3,799 proteins is given in Table I as well.

Independent Dataset Test

Moreover, as a demonstration of practical
application, predictions were also conducted for
the 4,498 proteins in the independent dataset
(Online Supplemental Materials B) based on
the rule-parameters derived from the 3,799
proteins in the training dataset (Online Supple-
mental Materials A). The result thus obtained
is also given in Table I, from which we can see
that, of the 4,498 proteins, 3,246 were correctly
predicted for their subcellular locations. The
overall success rate is 72.2%.

Furthermore, to facilitate comparison, the
results predicted by various other methods on
the same datasets are also listed in Table I,
stimulating the following discussions. (1) If the
samples of proteins are completely randomly
assigned among the 14 possible subsets, the
success rate would generally be 1/14& 7.1%,

TABLE I. Overall Rates of Correct Prediction for the 14 Subcellular Locations (Fig. 1) of
Proteins by Different Algorithms and Test Methods

Algorithm Input form

Test method

Resubstitutiona Jackknifea
Independent

datasetb

Least Hamming distance [Chou,
1989]

Amino acid compositionc 1428

3799
¼ 37:6%

1392

3799
¼ 36:6%

1371

4498
¼ 30:5%

Least Euclidean distance
[Nakashima et al., 1986]

Amino acid compositionc 1391

3799
¼ 36:6%

1361

3799
¼ 35:8%

1388

4498
¼ 30:9%

ProtLock [Cedano et al., 1997] Amino acid compositionc 1655

3799
¼ 43:6%

1614

3799
¼ 42:5%

1829

4498
¼ 40:7%

Covariant discriminant [Chou
and Elrod, 1999a]

Amino acid compositionc 2580

3799
¼ 67:9%

2339

3799
¼ 61:6%

2751

4498
¼ 61:2%

Augmented covariant
discriminant [Chou, 2000a]

Pseudo amino acid compositiond 3245

3799
¼ 85:4%

2574

3799
¼ 67:8%

3246

4498
¼ 72:2%

aConducted for the 3,799 proteins classified into 14 subcellular locations in the training dataset as given in the Online Supplemental
Material A.
bConducted based on the rule parameters derived from the 3,799 proteins in the training dataset for the 4,498 proteins in the
independent dataset given in the Online Supplemental Material B.
cThe dimension of the conventional amino acid composition is 20, where no sequence-order effects are incorporated.
dThe dimension of the pseudo amino acid composition for the current study is 46, where the sequence-order effects are incorporated
through 13 delta-function correlation factors (l¼ 13) and 13 hydrophobicity correlation factors (m¼ 13); see Equation (7).
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and the corresponding rate by the weight-
ed random assignment would be (71/3799)2þ
(65/3799)2þ (316/3799)2þ (1113/3799)2þ (249/
3799)2 þ (289/3799)2þ (393/3799)2þ (90/3799)2þ
(123/3799)2þ (389/3799)2þ (399/3799)2þ (147/
3799)2þ (69/3799)2þ (86/3799)2& 13.9%, pro-
vided that the number of proteins in each
subcellular location as given in the Online
Supplemental Materials A is used to represent
the weight of each subset. Therefore, all the
rates listed in Table 1 are significantly higher
than the corresponding completely randomized
rate and weighted randomized rate, implying
that the amino acid composition does play an
important (although not a unique) role for pro-
tein subcellular location. (2) No matter whether
the re-substitution test, jackknife test or in-
dependent dataset test, the overall rates of
correct prediction obtained by the current
pseudo-amino acid composition approach, are
significantly higher than those by the previous
approaches: 31–49% higher than the simple
geometry algorithms [Nakashima et al., 1986;
Chou, 1989]; 25–42% higher than the ProtLock
algorithm [Cedano et al., 1997]; and 6–18%
higher than the covariant-discriminant algo-
rithm [Chou and Elrod, 1999b]. This is fully
consistent with what is expected because all the
sequence-order effects are completely ignored
in those approaches. (3) The success rates by
jackknife test are decreased compared with
those by the re-substitution test. The decrement
is more remarkable for small subsets, such as
centriole subset. This is because the cluster-
tolerant capacity [Chou, 1999a] for small sub-
sets is usually low. And hence the information
loss resulting from jackknifing will have a
greater impact upon the small subsets than
the large ones. However, the overall success
rate by the current approach can still reach
67.8%, which is significantly higher than the
corresponding rates by the other approaches.
It is also due to the information loss during
jackknifing that the overall success rate is
not always monotonously increased with the
dimension of pseudo amino acid composition.
Actually, different training dataset may have
different optimal number of pseudo amino acid
components to yield the highest overall jack-
knife success rate, as discussed earlier [Chou,
2001]. It is expected that the overall jackknife
success rate can be further enhanced through
improving the cluster-tolerant capacity of small
subsets by adding into them more new proteins

that have been found belonging to these subsets.
(4) Narrowing the scope of localization will
increase the success rate of prediction. For
example, when the protein subcellular locations
to be identified was reduced to the scope among
chloroplast, cytoplasm, cytoskeleton, endoplas-
mic reticulum, extracell, and nucleus, the cor-
responding success rate by jackknife test was
increased from 67.8% to 77.3%. This indicates
that the prediction quality can be substantially
improved if one can narrow down the scope of
subcellular location for a query protein accord-
ing to its source and other relevant informa-
tion (e.g., if a query protein is from an animal
organism, one can safely exclude the chloroplast
and vacuole subsets from consideration).

CONCLUSION

The development in statistical prediction of
protein subcellular location generally consists
of two cores: one is to construct a training data-
set and the other is to formulate a prediction
algorithm. The process in constructing train-
ing dataset from two subsets [Nakashima and
Nishikawa, 1994], to five subsets [Cedano et al.,
1997], to 12 subsets [Chou and Elrod, 1999b],
and to the current 14 subsets reflects the
advance in the first core. The second core can
be further separated into two sub-cores: one is
how to give a mathematical expression to
effectively represent a protein and the other is
how to find an operational equation to accu-
rately perform the prediction. The process in
expressing a protein from the 20-D amino-acid-
composition space [Nakashima et al., 1986;
Chou, 1989, 1995], to the (20þ l)-D parallel-
mode pseudo-amino-acid-composition space
[Chou, 2001], and to the current (20þ lþ m)
series-mode pseudo-amino-acid-composition
space reflects the progress of defining a protein
in terms of different mathematical representa-
tions. The process in conducting prediction
using the operation from the simple geometry
distance algorithms [Nakashima et al., 1986;
Chou, 1989], to the Mahalanobis distance
algorithm [Cedano et al., 1997], to the covariant
discriminant algorithm [Chou and Elrod,
1999b], and to the augmented covariant dis-
criminant algorithm [Chou, 2000a] reflects the
development by means of different mathema-
tical operations.

The datasets constructed in this study
have covered so far the largest area of protein
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localization. Therefore, many proteins which
were totally out of the classification scheme
before [Chou and Elrod, 1999b], such as those
belonging to the localization of cell wall and
centriole, can now be investigated.

One of the remarkable advantages for the
series-mode pseudo-amino-acid-composition re-
presentation is that it allows containing two
or more sets of factors generated by different
sequence-coupled modes, and hence providing
more potential and flexibility to incorporate
the sequence-order effects. It has not escaped
our notice that the series-mode pseudo-amino-
acid-composition introduced here may become a
very useful vehicle in proteomics and bioinfor-
matics that can be used to improve the quality
for predicting many other important character-
istics and attributes of proteins as well, such as
secondary structure contents [Zhang et al.,
1996; Chou, 1999b; Liu and Chou, 1999], folding
classes [Chou et al., 1998; Liu and Chou, 1998;
Zhou, 1998], GPCR types [Chou and Elrod,
2002; Elrod and Chou, 2002], enzyme family
classes [Chou and Elrod, 2003], and protein
quaternary structure attributes [Chou and Cai,
2003].
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